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In the regulation of gene expression, information of relevance to
the organism is represented by the concentrations of transcription
factor molecules. To extract this information the cell must effec-
tively “measure” these concentrations, but there are physical lim-
its to the precision of these measurements. We use the gap gene
network in the early fly embryo as an example of the tradeoff
between the precision of concentration measurements and the
transmission of relevant information. For thresholded measure-
ments we find that lower thresholds are more important, and fine
tuning is not required for near-optimal information transmission.
We then consider general sensors, constrained only by a limit
on their information capacity, and find that thresholded sensors
can approach true information theoretic optima. The information
theoretic approach allows us to identify the optimal sensor for
the entire gap gene network and to argue that the physical
limitations of sensing necessitate the observed multiplicity of
enhancer elements, with sensitivities to combinations rather than
single transcription factors.

sensing | gene regulation | development | information bottleneck

Cells control the concentrations of proteins in part by control-
ling the transcription of corresponding genes into messenger

RNA. This control is effected by the binding of transcription
factor (TF) proteins to specific sites along the genome. Transcrip-
tion factors can thus regulate the synthesis of other TFs, forming
a genetic network. Regulatory mechanisms internal to the net-
work must be precise enough to generate reliable relationships
between the concentration of input signals and the levels of gene
expression downstream. What must the cell do to extract and
make efficient use of the information provided by variations in
TF concentrations?

We usually think of transcription factors as controlling the level
of gene expression, but we can also view the expression level as
being the cell’s measurement of the TF concentration (1, 2). As
outside observers of the cell, we can measure the concentration
of transcription factors with considerable accuracy (3). However,
the cell’s “measurement” of TF concentration is based on the
arrival of these molecules at their binding sites, and this is a noisy
process, because TF concentrations are low, in the nanomolar
range (4–8). Physical limits to the measurement of such low con-
centrations were first explored in the context of bacterial chemo-
taxis (9), but have proved to be much more general (1, 10–12).
What will be important for our discussion is not the precise values
of these limits, but rather that the limits exist and are significant
on the scale of biological function.

We focus on the example of the gap genes (more precisely,
the transcription factor proteins expressed from them) that are
crucial in the early events of embryonic development in fruit
flies (13, 14). These four proteins form a network with inputs
from primary maternal morphogen molecules and outputs in the
striped patterns of pair-rule gene expression. These stripes are
positioned with an accuracy of ±1% along the long (anterior–
posterior) axis of the embryo, and this is the accuracy of subse-
quent developmental events such as the formation of the cephalic
furrow (15, 16). The local concentrations of the gap proteins
provide just enough information to support this level of precision

(15). The algorithm that achieves optimal readout of this posi-
tional information predicts, quantitatively, the distortions of the
pair-rule stripes in mutant flies where individual maternal inputs
are deleted (17).

The gap gene network offers us the chance to ask how accu-
rately the transcription factor concentrations need to be mea-
sured and to infer features of the regulatory architecture respon-
sible for these measurements. The information that the gap genes
convey about position along the anterior–posterior axis is what al-
lows nuclei to make distinct cell fate decisions required for devel-
opment; this ability to make distinct cell fate decisions needs to be
possible even after the transcriptional apparatus has made noisy
measurements of the TF concentrations (Fig. 1A): We investigate
here how this can be seen as a sensing or signal processing
problem. There is a tradeoff, such that less accurate sensing limits
the complexity and reproducibility of the final decisions. We start
with a more traditional view of how information is represented in
the concentration of a single TF, through thresholds or expression
domains, and then argue for a more abstract formulation of the
problem as selective data compression—trading bits of accuracy
in sensing for bits of information about position. In this abstract
view, aspects of the transcriptional regulatory mechanisms can
be seen as solutions to an information theoretic optimization
problem. We apply this approach to analyze the information
conveyed by the concentrations of all four gap proteins and find
that some of the complexities in how these molecules function
as transcription factors emerge naturally from solutions to the
relevant optimization problem.
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Many cellular processes depend on a quantitative response to
the concentration of transcription factor molecules. A plethora
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ing: Multiple enhancers with a combination of binding sites
regulate genes together based on spatially heterogeneous
transcription factors. Using the early fly embryo as an example,
we investigate abstract sensors with limited capacity due to
noise and optimize so that the sensors capture as much infor-
mation as possible about a cell’s position in the embryo. The
resulting optimal sensors have important features in common
with the known mechanisms of enhancer function.
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Fig. 1. Optimizing the flow of information provided through four transcription factors in the early fly embryo, here through thresholded sensing elements.
(A) The four gap gene expression patterns (kruppel, knirps, giant, and hunchback in color, details in the text and later) provide information about
distinguishable nuclear cell fates along the embryo’s anterior–posterior axis (x), which needs to be identifiable after the fly’s transcriptional apparatus
measures or senses the TFs: Here we investigate an abstract sensor to learn what features of the gap expression profiles a sensor should concentrate on
to optimize this information transfer. Biologically, this sensing is done by the regulatory elements. (B) Hb expression level vs. position along the anterior–
posterior axis embryo. Shown are mean (line) ± 1 SD (shading) across Nem = 38 embryos in a 5-min window (40 to 44 min) in nuclear cycle 14 (17). (C)
Positional information vs. threshold, from Eq. 4. (D) Positional information with two thresholds, Iθ1θ2 (σ1,σ2; x) (bits). (E) Positional information captured
with i = 1, . . . , K thresholds, as a function of the number of resolvable levels K + 1. Error bars (red) are mean ± 1 SE of our estimate of the maximum.
Circles (gray) are 300 values of I({σi}; x) at random settings of the K thresholds {θi}. The black dashed line indicates the positional information I(g; x),
available from the expression levels if measured precisely, and gray dashed lines are ± 1 SE in our estimate of this information. (F) Eigenvalues {λi} of the
Hessian matrix χ, from Eq. 10. The number of eigenvalues is the number of thresholds, one less than the number of resolvable expression levels. Shaded
bands are ± 1 SE in our estimates.

Thresholds
The classical view of the gap genes is that they are expressed
in domains (14). Implicitly this suggests that fine-scale varia-
tions in the concentration of these molecules are not important;
rather all that matters is whether expression is on or off. The
quantitative version of this idea is that subsequent events are
sensitive to whether expression levels are above or below a
threshold, corresponding to whether a cell is inside or outside
an expression domain. We know that such simple thresholding
loses a lot of the information that gap gene expression levels
carry about position along the anterior–posterior axis (15). Still,
we will look at this thresholding approach to gene regulation
more precisely, using the expression profile for a single gap TF
protein, Hb, as an example. While a single thresholding operation
throws away more than half of the available information, we
will see that this information could be recovered by multiple
parallel thresholding mechanisms or equivalently by a single
mechanism that could distinguish multiple “quantized” levels
of expression. Importantly, in either case these thresholds do
not need to be finely tuned, suggesting that there are plausible
pathways for evolution to find mechanisms with close to optimal
performance. This concrete discussion of thresholding also is
meant to provide some foundation for the more abstract view of
optimal sensing and compression that we introduce in the next
section.

In Fig. 1 B–E we use the gap protein Hunchback (Hb) to
illustrate the information loss associated with thresholding. At
each point x there is an expression level g (Fig. 1B), drawn from
a probability distribution P(g |x ); looking at many embryos we
have samples out of this distribution. Experimental data are from
ref. 17, where immunostaining of the proteins was used to obtain
expression profiles of the genes. We focus on a time window of 40
to 44 min into nuclear cycle 14, the final cycle before blastoderm
stage, during which the gap gene expression determines crucially

the cell fates of nuclei along the embryo’s anterior–posterior axis
through pair-rule, segment polarity, and hox gene expression.

If cells are only sensitive to whether expression levels are above
or below a threshold θ, then the variable that matters is

σ = H (g − θ), [1]

where H is the Heaviside step function, H (y > 0) = 1, and
H (y < 0) = 0. Then we can estimate the θ (threshold)-dependent
distribution Pθ(σ|x ),

Pθ(σ = 1|x ) =
∫

dg H (g − θ)P(g |x ) [2]

Pθ(σ = 0|x ) = 1− Pθ(σ = 1|x ). [3]

Finally, we compute the amount of (mutual) information that
the discrete variable σ provides about different possible nuclear
cell fates, quantified by the cell’s position along the anterior–
posterior axis,

Iθ(σ; x ) =
∑
σ

∫
dx P(x )Pθ(σ|x ) log2

[
Pθ(σ|x )
Pθ(σ)

]
bits, [4]

where P(x ) = 1/L, as a priori all positions along the length of
the embryo are equally likely, and

Pθ(σ) =

∫
dx P(x )Pθ(σ|x ). [5]

It is important that in exploring the impact of thresholding we
allow for the best possible choice of the threshold θ, which in this
example proves to be at θ∗ ∼1/3 of the maximal mean expression
level (Fig. 1C).

If the expression level is represented only by the on/off or
binary variable σ, then it can provide at most one bit of informa-
tion (about anything). We see that the mutual information about
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position obtained by a thresholded measurement comes close to
this bound, with Imax(σ; x ) = 0.92± 0.01 bits. But this is less than
one-half of the information that is carried by the Hb expression
levels,*

I (g ; x )≡
∫

dg

∫
dxP(x )P(g |x ) log2

[
P(g |x )
P(g)

]
[6]

= 2.09± 0.06 bits. [7]

Following appendix A8 of ref. 18 we analyze subsets of the data
to correct for effects of finite sample size and estimate errors.

One path to recovering the information that was lost by the
thresholded measurement is to imagine that the cell can resolve
more details, perhaps distinguishing reliably among three or four
different expression levels rather than just two. This is equivalent
to the cell having multiple readout mechanisms, each of which
can distinguish only on/off, but with different on/off switches hav-
ing different thresholds, in the spirit of the “French flag” model
(19). Because we can always put the thresholds in order, having
K binary switches is the same as distinguishing K + 1 different
expression levels. It can be useful to think of thresholding as
being implemented at individual binding sites for the TFs, or
perhaps at cooperative arrays of binding sites in enhancers, but
our arguments are independent of these microscopic details.

If we have two different elements, each of which reports on
whether the expression level is above or below a threshold, then
the relevant variables are

σ1 = H (g − θ1) [8]
σ2 = H (g − θ2). [9]

We see in Fig. 1D that there is a broad optimum in the positional
information that these variables capture, Iθ1θ2({σ1,σ2}; x ),
when the two thresholds are quite different from one an-
other, θ∗1 = 0.1 and θ∗2 = 0.58; these bracket the optimal
single threshold θ = 0.34. The maximum information now is
Imax({σ1,σ2}; x ) = 1.4± 0.015 bits, noticeably more than in
the case with one threshold but still far from capturing all the
available information.

We can generalize this idea to multiple thresholding elements,
which are described by a set of variables {σi}, with each σi =
H (g − θi), for i = 1, 2, · · · , K ; the relevant quantity now is
I ({σi}; x ). This positional information depends on all the thresh-
olds {θi}, and we perform a multidimensional optimization to
find the maximum of I ({σi}; x ). Fig. 1E shows that for cells
to extract all the positional information available from the Hb
concentration, they must distinguish eight or nine different ex-
pression levels, representing g with ∼ log2 8 = 3 bits of precision.

Distinguishing eight levels in this simple threshold picture
requires the cell to set seven thresholds. It might seem as though
this necessitates setting each threshold to its optimal value, a
form of fine tuning. To explore this we choose thresholds at
random, uniformly in the relevant interval 0< θ < 1. As shown
in Fig. 1E, typical random choices are far below the optimum,
as expected. But Fig. 1 C and D shows that there is a broad
plateau in information vs. one or two thresholds, which suggests
that multiple threshold choices could yield good results. Indeed,
even with eight thresholds we find that more than 1 in 1,000 of
our random choices in in Fig. 1E come within error bars of the
optimum.

Another way of looking at the issue of fine tuning is to examine
the behavior of the information in the neighborhood of the
optimum,

I ({θi}) = Imax(K ) +
1

2

K∑
i,j=1

(θi − θ∗i )χij(θj − θ∗j ) + · · · , [10]

*Integrals are evaluated with a bin size of Δg ∼0.03 and Δx = 0.005.

estimating the Hessian matrix χ numerically from the data. The
matrix χ has units of bits, as we chose the thresholds to be dimen-
sionless. The eigenvectors of χ determine the combinations of
thresholds that have independent effects on the information, and
the eigenvalues {λi} of χ (also in bits) determine the sensitivity
along these independent directions. As the number of thresholds
increases, we find a broad spread of eigenvalues (Fig. 1F), as in
a wide class of “sloppy models” (20, 21). This means that some
combinations of thresholds are two orders of magnitude more
important than others.

In more detail, we find that the eigenvector with the largest
eigenvalue is concentrated on the lowest thresholds. For exam-
ple, with three thresholds, the eigenvector associated with the
largest eigenvalue is (–0.99, 0.08, 0.06). As more thresholds are
added, the eigenvectors of the largest two eigenvalues are combi-
nations of the lowest two thresholds or correspond to one of them
directly, while the smaller eigenvalues more loosely correspond
to linear combinations of higher thresholds.

Although we should be cautious about overly detailed molecu-
lar interpretations, it is natural to think of the mapping g →{σi}
as being implemented by binding of the transcription factor to
specific sites along the genome, so that thresholds are set by
the binding constants or affinities of the TF for these sites. The
spectrum of χ and the fact that the lowest threshold corresponds
to the largest eigenvalue tell us that the affinity at the strongest
binding site (for low concentrations) must be set carefully, but
the weaker binding sites can be scattered more freely across
the available dynamic range of concentrations. A near-optimal
array of thresholds thus could evolve by duplication of a strong
binding site, followed by sequence drift to weaker binding, and
then selection for the more complex and reproducible patterns
that result from capturing more positional information (22).

Beyond Thresholds
The idea that cells are sensitive only to whether the concentra-
tion of a transcription factor is above or below a threshold is
used quite widely, if informally (23–27). This picture embodies
the intuition that arbitrarily small changes in TF concentration
cannot generate reliable responses. But if we take thresholding
seriously, it involves a perfect, noise-free distinction between
concentrations that are just above and just below threshold.
We want to have a more realistic description while avoiding an
explosion of parameters.

Transcription factors are thought to influence transcription
only through their binding to target sites. These targets are
defined by the presence of specific DNA sequences, termed
regulatory elements or enhancers. In this broad class of molec-
ular mechanisms, the cell does not have direct access to the
TF concentration g, but only to the occupancy of the binding
sites, perhaps averaged over time (28–31). A detailed model
would include many components: There can be multiple inter-
acting binding sites; these sites and the bound TF molecules
can interact with a host of other molecules, perhaps condensed
into a phase-separated droplet surrounding the site of active
transcription (32, 33); and there can be many molecular steps
through which TF binding actually influences the initiation of
transcription. A full model including all these complexities would
have many parameters and would lose much of its predictive
power.

What is essential is that binding of TF molecules to their
target sites is a noisy process, for fundamental physical reasons
(1, 9–12). If we abstract away from the details, transcription is
controlled not by the TF concentration directly, but by some
intermediate variable, such as the occupancy of the relevant bind-
ing sites. We can think of this intermediate variable as a sensor of
the TF concentration. Because the sensing mechanisms are noisy,
this sensor can provide only a limited amount of information
about the actual concentration.
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Rather than trying to make a detailed model within which
we can calculate the levels of noise and the resulting limits to
information, we want to understand the consequences of these
limits. We assume, generally, that the TF concentration g is being
mapped into some other variable by the sensor, and we can call
this variable C. This (noisy) mapping g → C can be expressed
in a probability distribution P(C |g), which describes the sensor.
Since we do not know which of the molecular mechanisms the
cell uses to measure, and thus how precision is limited, we
want to assume the most general or unbiased version of limited
precision. Thus, we describe limited precision by limiting the
mutual information,

I (C ; g) =
∑
C

∫
dg P(C , g) log2

[
P(C |g)
P(C )

]
, [11]

which is transmitted from the TF concentration variable g to the
sensor’s encoding C. Different molecular mechanisms generate
different mappings g → C , but in all mechanisms the low con-
centrations of the relevant molecules limit the information that
is transmitted. Thus, a biological sensor, corresponding to a reg-
ulatory element or enhancer with biologically reasonable arrival
statistics of TF molecules, necessarily experiences a limitation on
its information capacity I (C ; g); this is a more general as well as
realistic constraint than thresholding.

Information Bottleneck and the Optimal Sensor
We now want to find the mapping g → C that conveys the highest
biologically relevant positional information, I (C ; x ), for a range
of limited capacities I (C ; g). We refer to these mappings as opti-
mal sensors. For comparison, the thresholded sensors discussed
in the previous section correspond to deterministic mappings [all
P(C |g) ∈ {0, 1}] with a small number of discrete states or levels
||C || in the variable C.

Instead of restricting to thresholds, we want to search over all
mappings g → C with a fixed I (C ; g) and maximize I (C ; x ). This
can be expressed as an optimization problem,

max
P(C |g)

[I (C ; x )− TI (C ; g)] , [12]

where T is a Lagrange multiplier that allows us to modulate the
constraint on sensor capacity I (C ; g). This problem of optimizing
P(C |g) is known as the “information bottleneck” problem (34).
Its solution gives an iterative algorithm that finds P(C |g). This
problem and the algorithm have implications for machine learn-
ing (35, 36) or finding efficient encodings in neuronal systems
(37); in these fields, the optimal P(C |g) is often described as a
compression of g. Qualitatively, the algorithm identifies (poten-
tially noisy) sets of values of g that are most informative about x
and focuses P(C |g) to make maximum use of those values.

We solve the optimization problem in Eq. 12 numerically,
considering C to be a variable with a discrete set of values or
states and varying the number of these states, ||C ||. At fixed
||C ||, decreasing T allows I (C ; g) to be larger and pushes the
noisy mapping P(C |g) toward being deterministic. Results of
the bottleneck analysis for Hb are shown in Fig. 2 as trajectories
(solid gray and black lines) in the plane I (C ; x ) vs. I (C ; g).
Only the region below the dashed diagonal and horizontal lines
is theoretically accessible due to the data-processing inequality
[I (C ; x )≤ I (C ; g) and I (C ; x )≤ I (g ; x )], which implies that
even an optimal sensor cannot know more about positional in-
formation or nuclear cell fates than is provided by the protein ex-
pression itself. Often, for example for neuronal systems (37), the
bounding curve for the optimal sensor at large ||C || (solid black
line) is farther away from the data-processing bound than here.
This optimal bounding curve that emerges from the information
bottleneck analysis separates the plane into a physically possible
region (below the curve) and an impossible region (above the

Fig. 2. The information bottleneck for positional information carried by
Hb expression levels. We map expression into some compressed description,
g → C, and find the maximum I(C; x) at fixed I(C; g), from Eq. 12, shown
as the solid line with different grayshades indicating different numbers of
states ||C||. Solid red points with error bars are the I(θi; g)–I(θi ; x) pairs from
the optimal discretization by multiple thresholds in Fig. 1E and match with
the T → 0 limit of the bottleneck solutions with fixed ||C||. The light red
crosses are from an explicitly deterministic formulation of the bottleneck
problem (39). Top shows probability distributions P(C|g) at different in-
formation capacities I(C; g) along the bottleneck curve, here for ||C|| = 70
states; intermediate levels of g ∈ [0.05, 0.8] are progressively better resolved
as the capacity increases.

curve). As I (C ; g) becomes large, the curve plateaus at the
available positional information I (g ; x ).

The optimal thresholding sensors from Fig. 1 correspond to
the endpoints of the bottleneck solutions with ||C || equal to
the number of resolvable expression levels. We see that these
thresholded sensors, or deterministic endpoints of bottleneck
solutions with finite ||C ||, are almost on the optimal bounding
curve. This is unusual for general compression problems, where
the optimal thresholded sensor falls below the optimal curve.
Thus, although the picture of multiple noiseless thresholds is
physically wrong, it does correspond, almost quantitatively, to
an information theoretic optimization of positional information
with the constraint of limited information capacity I (C ; g) in the
sensor. This is important, because it suggests that the intuition
behind the French flag model or the biological importance of
the gap expression boundaries corresponds more closely than
expected to a true information theoretic optimization.

We can understand more about the structure of the optimal
mappings g → C by looking at the distributions P(C |g), shown
in Fig. 2, Top. These P(C |g) correspond to the three I (C ; g),
marked by the arrows, of the black information bottleneck curve,
where we have used ||C ||= 70 numerically but normalized to
1 to emphasize the almost continuous character of C. At small
I (C ; g) whole ranges of g are mapped uniformly into ranges of
C, while at larger I (C ; g) we see the emergence of a reliably
graded mapping, especially in the range bracketing half-maximal
expression. In all panels in Fig. 2, the optimal sensor focuses
on the low expression levels of Hb, which are biologically the
most precise expression levels (Fig. 1A). That the optimal sensor
resolves these levels more than noisily expressed levels to receive
the most information about the system is expected from intuition
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for optimal sensor arrangements in neurons, in the spirit of
ref. 38.

The light red crosses in Fig. 2 correspond to a greedy,
deterministic approximation to the full optimization problem
in the way of refs. 39 and 40; we provide more details on
this calculation in SI Appendix. This approximation generates
thresholded sensors, but as we add more thresholds one
cannot go back to readjust the existing thresholds. Despite this
restriction, the results are very close to the true optimum, so
that there is a hierarchical evolutionary path to nearly optimal
performance.

A detailed discussion of how the optimal sensor corresponds
to models of sensing that involve binding-site occupation (41, 42)
would go beyond the scope of this paper. Qualitatively, however,
we note that Fig. 2, Top could be compared to such sensors, with
the steep change in C vs. g corresponding to highly cooperative
binding; interestingly the predicted degree of cooperativity de-
pends on the sensor capacity I (C ; g).

Multiple Regulatory Elements for Hb
We see from Fig. 2 that capturing all the positional information
encoded by Hb requires measuring the expression level with a
sensor capacity of I (C ; g)∼3 bits of precision. This is consistent
with our conclusions from the analysis of thresholded sensors,
where the optimal sensors with seven to nine thresholds also have
a capacity of I (C ; g)∼3 bits. We have done the same analysis for
the other gap TF proteins (Kruppel, Kr; Giant, Gt; and Knirps,
Kni) and also find that ∼3 bits of capacity are required in each
case.

How does this information capacity compare with the infor-
mation capacity of biological regulatory elements, such as en-
hancers? Estimates based both on direct measurements and on
more detailed models indicate that the capacity of a regulatory
element is in the range of 1 to 3 bits (2, 43). These estimates
depend on the absolute concentrations of the relevant molecules,
on the time available for reading out the information, on the
length of the regulatory elements, and on other details of the
different noise sources in the system (2, 43). At one extreme, if
the capacity of a biological regulatory element is 3 bits, then a sin-
gle regulatory element is sufficient to capture the full positional
information; in this case, it should have been possible for the fly’s
transcriptional apparatus to extract all the available positional
information using only one regulatory element or enhancer, but
this requires that this element operates close to the physical limits
to information capacity. But if the capacity of a single element
is only 1 bit, then we need multiple regulatory elements even in
response to a single transcription factor. It is clear from Fig. 2
that there is a very big difference between a capacity of 1 bit and
that of 3 bits.

Optimal Sensor for All the Gap Proteins
One might argue that the fly does not need to extract this much
positional information about cell fates from Hb, as the other
gap proteins provide information as well. Indeed, we know that
biologically all four gap TF proteins (Kr, Kni, Gt, and Hb) are
important for nuclei to take their correct cell fates. Practically,
the temporal changes in the expression patterns could also be
important (44, 45), but in the first instance we again focus on a
sensor that measures the expression profiles 40 to 44 min into
cycle 14, as it has been shown that these are sufficient to predict
the positions of pair-rule stripes (17). Thus, we need to find
the optimal sensor for the joint gap expression profiles to draw
biologically relevant lessons from our approach. Rather than
considering, as above, the mapping gHb → C , we can consider
mappings from combinations of expression levels of multiple-gap
TFs (Fig. 3A) into C, corresponding to a single optimal sensing

B

A C

Fig. 3. The information bottleneck for positional information carried by
all four gap gene expression levels. (A) Expression vs. position along the
anterior–posterior axis for Hb (red), Kr (blue), Kni (green), and Gt (mustard).
Shown are mean (solid) and SD (shading) across Nem = 38 embryos in a 5-min
window (40 to 44 min) in nuclear cycle 14 (17). (B) Information bottleneck
results, as in Fig 2. Shown are optimal solutions with ||C|| = 8, 100 , and 800
(shades of gray) and solutions with independent compression of each gene
expression level (blue). (C) Decoding maps P(x′|x) based on compressed
representations of the expression levels: no compression (Top), I(C; {gi}) = 4
bits (middle), and I(C; {gi}) = 2 bits (Bottom).

element; i.e., {gi} ≡ {gKr, gKni, gGt, gHb}→ C . The analog of
Eq. 12 is the optimization problem

max
P(C |{gi})

[I (C ; x )− TI (C ; {gi})] . [13]

We apply the information bottleneck scheme to find the optimal
sensor and see that we can capture a significant fraction of the
information provided by all gap TFs by keeping only 4 bits of
information about their expression levels or just 1 bit per gene
(Fig. 3B), but 4 bits still capture less than 90% of the available
information.

We can visualize what is being gained as the sensor capacity
I (C ; {gi}) increases, using the decoding maps introduced in
ref. 17. The decoding map in Fig. 3 C, Top is the best possi-
ble decoding map given the expression levels that we observe
experimentally. The maps show the distribution of positions x ′

consistent with the gap gene expression levels seen in nuclei at
the true position x,

P(x ′|x ) = P(x ′|{gi})
∣∣∣∣
{gi=gi(x)}

; [14]

for simplicity we show this averaged over all the expression levels
found at x. Using all the available information, P(x ′|x ) forms a
narrow band around x ′ = x , with width σx/L∼0.01 (17). In Fig.
3 C, Middle and Bottom we imagine that inference is based not
on the actual expression levels but on the compressed version C,

P(x ′|x ) =
∑
C

P(x ′|C )P(C |{gi})
∣∣∣∣
{gi(x)}

, [15]

as explained in more detail in SI Appendix; we do this for the
optimal compressions with I (C ; {gi}) = 2, and 4 bits. We see
that as the compression becomes more severe, the inference
becomes more uncertain (larger σx ) and genuinely ambiguous.
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This more noisy inference has biological consequences: Sensors
with capacity of much less than 4 bits do not capture enough
information to predict the patterns of pair-rule expression stripes
in mutants, following the analysis in ref. 17.

To extract all the available positional information requires
mechanisms that preserve ≥8 bits of information about the
combined expression levels of the four gap genes. The grayscale
in Fig. 3 indicates that a ||C || of at least 30 to 50 levels would be
required. Again, if we think that a single sensor can implement
one threshold, this means that more than one sensor would
be required, even in the best possible case where information-
theoretically optimal sensing is possible. We know that there
are several dozen enhancer sites that respond to the gap gene
TFs, and we see that this degree of complexity may be required
by information theoretic constraints, even if these sensors make
optimal use of the available information.

We end with a final note regarding the splitting of the op-
timal sensor into multiple sensors. We investigate four sensors
Ci (i ∈ {1, 4}), where each sensor can respond only to a sin-
gle one of the four gap transcription factors. Mathematically,
this corresponds to demanding that the compressed variables
be constructed from individual gene expression levels, so that
gHb → C1, gKr → C2, etc., but all the states of the compressed
variable C = {C1,C2,C3,C4} can provide positional informa-
tion. More precisely, we optimize all of the individual distribu-
tions Pi(Ci|gi), and the objective function is

F = I ({Ci}; x )− T
4∑

i=1

I (Ci; gi). [16]

We find that such a set of four sensors always is substantially
worse than a single optimal sensor, as indicated by the blue line
in Fig. 3, even with same total information capacity (for more
details see SI Appendix). This loss of information indicates the
importance of having regulatory mechanisms that are sensitive to
combinations of transcription factors. In fact, the readout of po-
sitional information encoded in the gap proteins is implemented
by the array of enhancers controlling pair-rule gene expression,

and these enhancers are prototypical instances of regulatory
elements that respond to combinations of transcription factors
(29, 32, 46, 47). While there is some distance between our abstract
formulation and the molecular details, it is attractive to see that
this mechanistic complexity is required as a response to basic
physical and information theoretic limitations.

Conclusion
To summarize, individual regulatory mechanisms have limited
information capacity, and our central result is that this capacity
in turn sets strict limits on the amount of positional information
that can be extracted from the gap gene expression levels. In this
paper, we see the measurement of the transcription factors as a
problem of efficient sensing or compression and use the infor-
mation bottleneck algorithm to identify an optimal sensor for
this network. Precise comparison with ideas about thresholded
reading of the gap TF Hb shows that the thresholds do not need
to be fine-tuned and exhibit a hierarchy of sensitivities. Crucially,
we find that it almost certainly is not possible to read out enough
positional information with a single enhancer element. For the
nuclei to obtain at least 90% of the information provided by
the gap TF network, a large number of thresholds (30–50) or
a high capacity in the optimal sensor is required, and this must
be realized by multiple enhancers. Further, if each enhancer
responds to a single TF, there is a dramatic loss of efficiency. The
information theoretic optimization principle we have explored
here thus predicts that expression levels must be read by multiple
enhancers, each sensitive to combinations of the gap TFs. This
complex enhancer logic indeed is how gap gene expression levels
drive downstream events in the fly embryo.

Data Availability. Previously published data were used for this work (17).
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